DOI: 10.29252/ijmsi.16.2.163

\mathcal{N} -Subalgebras of BCK/BCI-Algebras which are Induced from Hyperfuzzy Structures

Hashem Bordbar $^{a*},$ Mohammad Rahim Bordbar b, Rajab Ali Borzooei c and Young Bae Jun^d

^aCenter for Information Technologies and Applied Mathematics, University of Nova Gorica, Slovenija. ^bDepartment of Physics, University of Qom, Qom, Iran

^cDepartment of Mathematics, Shahid Beheshti University, Tehran, Iran.

 $^d\mathrm{Department}$ of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea.

E-mail: Hashem.bordbar@ung.si E-mail: mbordbar@qom.ac.ir E-mail: borzooei@sbu.ac.ir E-mail: skywine@gmail.com

ABSTRACT. In the paper [J. Ghosh and T.K. Samanta, Hyperfuzzy sets and hyperfuzzy group, Int. J. Advanced Sci Tech. 41 (2012), 27–37], Ghosh and Samanta introduced the concept of hyperfuzzy sets as a generalization of fuzzy sets and interval-valued fuzzy sets, and applied it to group theory. The aim of this manuscript is to study \mathcal{N} -structures in BCK/BCI-algebras induced from hyperfuzzy structures.

Keywords: Hyperfuzzy set, Hyperfuzzy structure, Hyperfuzzy subalgebra, \mathcal{N} -Subalgebra, Induced \mathcal{N} -Function.

 $\textbf{2000 Mathematics subject classification:}\ 06F35,\ 03G25,\ 03B52$

^{*}Corresponding Author

1. Introduction

Fuzzy set theory is firstly introduced by Zadeh [15] and opened a new path of thinking to mathematicians, physicists, chemists, engineers and many others due to its diverse applications in various fields. Algebraic hyperstructure, which is introduced by the French mathematician Marty [13], represent a natural extension of classical algebraic structures. Since then, many papers and several books have been written in this area. Nowadays, hyperstructures have a lot of applications in several domains of mathematics and computer sciences. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. The study of fuzzy hyperstructures is an interesting research area of fuzzy sets. As a generalization of fuzzy sets and interval-valued fuzzy sets, Ghosh and Samanta [9] introduced the notion of hyperfuzzy sets, and applied it to group theory. Jun et al. [11] applied the hyperfuzzy sets to BCK/BCI-algebras, and introduced the notion of k-fuzzy substructure for $k \in \{1, 2, 3, 4\}$. They introduced the concepts of hyperfuzzy substructures of several types by using k-fuzzy substructures, and investigated their basic properties. They also introduced the notion of hyperfuzzy subalgebras of type (i, j) for $i, j \in \{1, 2, 3, 4\}$. Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tool. To attain such object, Jun et al. [12] introduced and used a new function which is called negative-valued function. The important achievement of the paper [12] was that one can deal with positive and negative information simultaneously by combining ideas in [12] and already well known positive information.

In this paper, we study \mathcal{N} -structures in BCK/BCI-algebras induced from hyperfuzzy structures. We introduce the notions of \mathcal{N}_k -subalgebras in BCK/BCI-algebras for $k \in \{1, 2, 3, 4\}$, and investigate several properties. We investigate relations between \mathcal{N}_k -subalgebras induced from hyperfuzzy sets and (i, j)-hyperfuzzy subalgebras in BCK/BCI-algebras for $i, j, k \in \{1, 2, 3, 4\}$.

2. Preliminaries

By a BCI-algebra we mean a system $X:=(X,*,0)\in K(\tau)$ in which the following axioms hold:

- (I) ((x*y)*(x*z))*(z*y) = 0,
- (II) (x * (x * y)) * y = 0,
- (III) x * x = 0,
- (IV) $x * y = y * x = 0 \Rightarrow x = y$

for all $x, y, z \in X$. If a BCI-algebra X satisfies 0 * x = 0 for all $x \in X$, then we say that X is a BCK-algebra. We can define a partial ordering \leq by

$$(\forall x, y \in X) (x \le y \iff x * y = 0).$$

In a BCK/BCI-algebra X, the following hold:

$$(\forall x \in X) \ (x * 0 = x), \tag{2.1}$$

$$(\forall x, y, z \in X) \ ((x * y) * z = (x * z) * y). \tag{2.2}$$

A non-empty subset S of a BCK/BCI-algebra X is called a subalgebra of $X \text{ if } x * y \in S \text{ for all } x, y \in S.$

We refer the reader to the books [10] and [14] for further information regarding BCK/BCI-algebras.

By a fuzzy structure over a nonempty set X we mean an ordered pair (X, ρ) of X and a fuzzy set ρ on X.

Denote by $\mathcal{F}(X, [-1, 0])$ the collection of functions from a set X to [-1, 0]. We say that an element of $\mathcal{F}(X, [-1, 0])$ is a negative-valued function from X to [-1,0] (briefly, \mathcal{N} -function on X.) By an \mathcal{N} -structure we mean an ordered pair (X, λ) of X and an \mathcal{N} -function λ on X.

Let X be a nonempty set. A mapping $\lambda: X \to \mathcal{P}([0,1])$ is called a hyperfuzzy set over X (see [9]), where $\mathcal{P}([0,1])$ is the family of all nonempty subsets of [0,1]. An ordered pair $(X,\tilde{\lambda})$ is called a hyper structure over X.

Given a hyper structure (X,λ) over a nonempty set X, we consider two fuzzy structures $(X, \tilde{\lambda}_{\inf})$ and $(X, \tilde{\lambda}_{\sup})$ over X in which

$$\tilde{\lambda}_{\text{inf}}: X \to [0, 1], \ x \mapsto \inf{\{\tilde{\lambda}(x)\}},$$

$$\tilde{\lambda}_{\text{sup}}: X \to [0, 1], \ x \mapsto \sup{\{\tilde{\lambda}(x)\}}.$$

Given a nonempty set X, let $\mathcal{B}_K(X)$ and $\mathcal{B}_I(X)$ denote the collection of all BCK-algebras and all BCI-algebras, respectively. Also $\mathcal{B}(X) := \mathcal{B}_K(X) \cup$ $\mathcal{B}_I(X)$.

Definition 2.1 ([11]). For any $(X, *, 0) \in \mathcal{B}(X)$, a fuzzy structure (X, λ) over (X, *, 0) is called a

• fuzzy subalgebra of (X, *, 0) with type 1 (briefly, 1-fuzzy subalgebra of (X, *, 0) if

$$(\forall x, y \in X) (\lambda(x * y) \ge \min\{\lambda(x), \lambda(y)\}), \tag{2.3}$$

• fuzzy subalgebra of (X, *, 0) with type 2 (briefly, 2-fuzzy subalgebra of (X, *, 0) if

$$(\forall x, y \in X) (\lambda(x * y) \le \min\{\lambda(x), \lambda(y)\}), \qquad (2.4)$$

• fuzzy subalgebra of (X, *, 0) with type 3 (briefly, 3-fuzzy subalgebra of (X, *, 0) if

$$(\forall x, y \in X) (\lambda(x * y) \ge \max\{\lambda(x), \lambda(y)\}), \tag{2.5}$$

• fuzzy subalgebra of (X, *, 0) with type 4 (briefly, 4-fuzzy subalgebra of (X, *, 0) if

$$(\forall x, y \in X) (\lambda(x * y) \le \max\{\lambda(x), \lambda(y)\}). \tag{2.6}$$

Definition 2.2 ([11]). For any $(X, *, 0) \in \mathcal{B}(X)$ and $i, j \in \{1, 2, 3, 4\}$, a hyper structure $(X, \tilde{\lambda})$ over (X, *, 0) is called an (i, j)-hyperfuzzy subalgebra of (X, *, 0) if $(X, \tilde{\lambda}_{inf})$ is an i-fuzzy subalgebra of (X, *, 0) and $(X, \tilde{\lambda}_{sup})$ is a j-fuzzy subalgebra of (X, *, 0).

3. \mathcal{N} -subalgebras based on hyperfuzzy structures

In what follows, let $(X, *, 0) \in \mathcal{B}(X)$ unless otherwise specified.

Definition 3.1. Given a hyper structure $(X, \tilde{\lambda})$ over (X, *, 0), we define an \mathcal{N} -function on (X, *, 0) as follows:

$$\tilde{\lambda}_{\mathcal{N}}: X \to [-1, 0], \ x \mapsto \tilde{\lambda}_{\inf}(x) - \tilde{\lambda}_{\sup}(x),$$

which is called an induced \mathcal{N} -function from $(X, \tilde{\lambda})$ on (X, *, 0).

Definition 3.2. A hyper structure $(X, \tilde{\lambda})$ over (X, *, 0) is called an

• \mathcal{N}_1 -subalgebra of (X, *, 0) if

$$(\forall x, y \in X) \left(\tilde{\lambda}_{\mathcal{N}}(x * y) \ge \min\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \right), \tag{3.1}$$

• \mathcal{N}_2 -subalgebra of (X, *, 0) if

$$(\forall x, y \in X) \left(\tilde{\lambda}_{\mathcal{N}}(x * y) \le \min\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \right), \tag{3.2}$$

• \mathcal{N}_3 -subalgebra of (X, *, 0) if

$$(\forall x, y \in X) \left(\tilde{\lambda}_{\mathcal{N}}(x * y) \ge \max\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \right), \tag{3.3}$$

• \mathcal{N}_4 -subalgebra of (X, *, 0) if

$$(\forall x, y \in X) \left(\tilde{\lambda}_{\mathcal{N}}(x * y) \le \max\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \right). \tag{3.4}$$

EXAMPLE 3.3. Consider a BCK-algebra $X = \{0, 1, 2, 3, 4\}$ with the binary operation * which is given in Table 1 (see [14]).

Table 1. Cayley table for the binary operation "*"

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	3	0	0
4	4	3	4	1	0

Let $(X, \tilde{\lambda})$ be a hyper structure over (X, *, 0) in which $\tilde{\lambda}$ is given as follows:

$$\tilde{\lambda}: X \to \tilde{\mathcal{P}}([0,1]), \ x \mapsto \left\{ \begin{array}{ll} [0.2,0.4) & \text{if } x = 0, \\ (0.1,0.3] \cup [0.5,0.9) & \text{if } x = 1, \\ [0.1,0.3] & \text{if } x = 2, \\ [0.3,0.4) \cup [0.5,0.6] & \text{if } x = 3, \\ [0.3,0.8] & \text{if } x = 4. \end{array} \right.$$

Then the induced \mathcal{N} -function from $(X, \tilde{\lambda})$ is given by Table 2

Table 2. Induced N-function from $(X, \tilde{\lambda})$

\overline{X}	0	1	2	3	4
$\tilde{\lambda}_{\mathcal{N}}$	-0.2	-0.8	-0.2	-0.3	-0.5

Example 3.4. Consider a BCI-algebra $X = \{0, 1, a, b, c\}$ with the binary operation * which is given in Table 3 (see [14]).

Table 3. Cayley table for the binary operation "*"

*	0	1	a	b	c
0	0	0	a	b	c
1	1	0	a	b	c
a	a	a	0	c	b
b	b	b	c	0	a
c	c	c	b	a	0

Let $(X, \tilde{\lambda})$ be a hyper structure over (X, *, 0) in which $\tilde{\lambda}$ is given as follows:

$$\tilde{\lambda}: X \to \tilde{\mathcal{P}}([0,1]), \ x \mapsto \left\{ \begin{array}{ll} [0.2,1.0) & \text{if } x = 0, \\ (0.1,0.4] \cup [0.5,0.8] & \text{if } x = 1, \\ [0.4,0.9] & \text{if } x = a, \\ [0.3,0.6) & \text{if } x \in \{b,c\} \end{array} \right.$$

The induced \mathcal{N} -function from $(X, \tilde{\lambda})$ is given by Table 4.

Table 4. Induced \mathcal{N} -function from $(X, \tilde{\lambda})$

\overline{X}	0	1	a	b	c
$\tilde{\lambda}_{\mathcal{N}}$	-0.8	-0.7	-0.5	-0.3	-0.3

It is routine to verify that $(X, \tilde{\lambda})$ is an \mathcal{N}_4 -subalgebra of (X, *, 0).

Given a hyper structure $(X, \tilde{\lambda})$ over (X, *, 0) and $t \in [-1, 0]$, consider the following sets:

$$U_{\mathcal{N}}(\tilde{\lambda};t) := \{ x \in X \mid \tilde{\lambda}_{\mathcal{N}}(x) \ge t \}, \tag{3.5}$$

$$L_{\mathcal{N}}(\tilde{\lambda};t) := \{ x \in X \mid \tilde{\lambda}_{\mathcal{N}}(x) \le t \}. \tag{3.6}$$

Theorem 3.5. A hyper structure $(X, \tilde{\lambda})$ over (X, *, 0) is an \mathcal{N}_1 -subalgebra of (X, *, 0) if and only if the following assertion is valid.

$$(\forall t \in [-1,0]) \left(U_{\mathcal{N}}(\tilde{\lambda};t) \neq \emptyset \Rightarrow U_{\mathcal{N}}(\tilde{\lambda};t) \text{ is a subalgebra of } (X,*,0) \right).$$
 (3.7)

Proof. Let $(X, \tilde{\lambda})$ be an \mathcal{N}_1 -subalgebra of (X, *, 0) and let $t \in [-1, 0]$ be such that $U_{\mathcal{N}}(\tilde{\lambda}; t)$ is nonempty. If $x, y \in U_{\mathcal{N}}(\tilde{\lambda}; t)$, then $\tilde{\lambda}_{\mathcal{N}}(x) \geq t$ and $\tilde{\lambda}_{\mathcal{N}}(y) \geq t$. It follows from (3.1) that

$$\tilde{\lambda}_{\mathcal{N}}(x * y) \ge \min{\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\}} \ge t$$

and so that $x * y \in U_{\mathcal{N}}(\tilde{\lambda}; t)$. Hence $U_{\mathcal{N}}(\tilde{\lambda}; t)$ is a subalgebra of (X, *, 0).

Conversely, assume that $U_{\mathcal{N}}(\tilde{\lambda};t)$ is a subalgebra of (X,*,0) for all $t \in [-1,0]$ with $U_{\mathcal{N}}(\tilde{\lambda};t) \neq \emptyset$. If there exist $a,b \in X$ such that

$$\tilde{\lambda}_{\mathcal{N}}(a*b) < \min{\{\tilde{\lambda}_{\mathcal{N}}(a), \tilde{\lambda}_{\mathcal{N}}(b)\}},$$

then $a, b \in U_{\mathcal{N}}(\tilde{\lambda}; t)$ and so $a * b \in U_{\mathcal{N}}(\tilde{\lambda}; t)$ by taking $t := \min{\{\tilde{\lambda}_{\mathcal{N}}(a), \tilde{\lambda}_{\mathcal{N}}(b)\}}$. Thus $\tilde{\lambda}_{\mathcal{N}}(a * b) \geq t$, which is a contradiction. Hence

$$\tilde{\lambda}_{\mathcal{N}}(x * y) \ge \min{\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\}}$$

for all $x, y \in X$. Therefore $(X, \tilde{\lambda})$ is an \mathcal{N}_1 -subalgebra of (X, *, 0).

Corollary 3.6. If a hyper structure $(X, \tilde{\lambda})$ over (X, *, 0) is an \mathcal{N}_3 -subalgebra of (X, *, 0), then the assertion (3.7) is valid.

The converse of Corollary 3.6 may not be true as seen in the following example.

EXAMPLE 3.7. Consider a BCI-algebra $X = \{0, 1, 2, a, b\}$ with the binary operation * which is given in Table 5 (see [14]).

Table 5. Cayley table for the binary operation "*"

*	0	1	2	a	b
0	0	0	0	a	a
1	1	0	1	b	a
2	2	2	0	a	a
a	a	a	a	0	0
b	b	a	b	1	0

Let (X, λ) be a hyper structure over (X, *, 0) in which λ is given as follows:

$$\tilde{\lambda}: X \to \tilde{\mathcal{P}}([0,1]), \ x \mapsto \left\{ \begin{array}{ll} [0.2,0.4) & \text{if } x = 0, \\ (0.1,0.4] \cup [0.5,0.7] & \text{if } x = 1, \\ [0.5,0.8] & \text{if } x = 2, \\ [0.4,0.5) \cup (0.6,0.8] & \text{if } x = a, \\ [0.3,0.9) & \text{if } x = b \end{array} \right.$$

The induced N-function from (X, λ) is given by Table 6

Table 6. Induced N-function from $(X, \tilde{\lambda})$

\overline{X}	0	1	2	a	b
$\tilde{\lambda}_{\mathcal{N}}$	-0.2	-0.6	-0.3	-0.4	-0.6

Hence we have

$$U_{\mathcal{N}}(\tilde{\lambda};t) = \begin{cases} \emptyset & \text{if } t \in (-0.2,0], \\ \{0\} & \text{if } t \in (-0.3,-0.2], \\ \{0,2\} & \text{if } t \in (-0.4,-0.3], \\ \{0,2,a\} & \text{if } t \in (-0.6,-0.4], \\ X & \text{if } t \in [-1,-0.6], \end{cases}$$

and so $U_{\mathcal{N}}(\tilde{\lambda};t)$ is a subalgebra of (X,*,0) for all $t \in [-1,0]$ with $U_{\mathcal{N}}(\tilde{\lambda};t) \neq \emptyset$. But $(X, \tilde{\lambda})$ is not an \mathcal{N}_3 -subalgebra of (X, *, 0) since

$$\tilde{\lambda}_{\mathcal{N}}(b*a) = \tilde{\lambda}_{\mathcal{N}}(1) = -0.6 < -0.4 = \max\{\tilde{\lambda}_{\mathcal{N}}(b), \tilde{\lambda}_{\mathcal{N}}(a)\}.$$

Theorem 3.8. A hyper structure $(X, \tilde{\lambda})$ over (X, *, 0) is an \mathcal{N}_4 -subalgebra of (X,*,0) if and only if the following assertion is valid.

$$(\forall t \in [-1,0]) \left(L_{\mathcal{N}}(\tilde{\lambda};t) \neq \emptyset \ \Rightarrow \ L_{\mathcal{N}}(\tilde{\lambda};t) \ is \ a \ subalgebra \ of \ (X,*,0) \right). \ \ (3.8)$$

Proof. Assume that (X, λ) is an \mathcal{N}_4 -subalgebra of (X, *, 0) and let $t \in [-1, 0]$ be such that $L_{\mathcal{N}}(\tilde{\lambda};t)$ is nonempty. If $x,y\in L_{\mathcal{N}}(\tilde{\lambda};t)$, then $\tilde{\lambda}_{\mathcal{N}}(x)\leq t$ and $\lambda_{\mathcal{N}}(y) \leq t$. It follows from (3.4) that

$$\tilde{\lambda}_{\mathcal{N}}(x * y) \leq \max{\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\}} \leq t$$

and so that $x * y \in L_{\mathcal{N}}(\tilde{\lambda};t)$. Hence $L_{\mathcal{N}}(\tilde{\lambda};t)$ is a subalgebra of (X,*,0).

Conversely, suppose that $L_{\mathcal{N}}(\tilde{\lambda};t)$ is a subalgebra of (X,*,0) for all $t \in$ [-1,0] with $L_{\mathcal{N}}(\lambda;t)\neq\emptyset$. Assume that there exist $a,b\in X$ such that

$$\tilde{\lambda}_{\mathcal{N}}(a*b) > \max\{\tilde{\lambda}_{\mathcal{N}}(a), \tilde{\lambda}_{\mathcal{N}}(b)\}.$$

If we take $t := \max\{\tilde{\lambda}_{\mathcal{N}}(a), \tilde{\lambda}_{\mathcal{N}}(b)\}$, then $a, b \in L_{\mathcal{N}}(\tilde{\lambda}; t)$ and so $a * b \in L_{\mathcal{N}}(\tilde{\lambda}; t)$. Thus $\tilde{\lambda}_{\mathcal{N}}(a*b) \leq t$, which is a contradiction. Hence

$$\tilde{\lambda}_{\mathcal{N}}(x * y) \leq \max{\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\}}$$

for all $x, y \in X$. Therefore $(X, \tilde{\lambda})$ is an \mathcal{N}_4 -subalgebra of (X, *, 0). **Corollary 3.9.** If a hyper structure $(X, \tilde{\lambda})$ over (X, *, 0) is an \mathcal{N}_2 -subalgebra of (X, *, 0), then the assertion (3.8) is valid.

The converse of Corollary 3.9 may not be true as seen in the following example.

EXAMPLE 3.10. Let $X = \{0, 1, 2, a, b\}$ be the *BCI*-algebra in Example 3.7. Consider a hyper structure $(X, \tilde{\lambda})$ over (X, *, 0) in which $\tilde{\lambda}$ is given as follows:

$$\tilde{\lambda}: X \to \tilde{\mathcal{P}}([0,1]), \ x \mapsto \left\{ \begin{array}{ll} [0.1,0.3] \cup (0.4,0.7) & \text{if } x = 0, \\ (0.2,0.5] & \text{if } x = 1, \\ [0.3,0.7] & \text{if } x = 2, \\ [0.4,0.5) \cup (0.5,0.6] & \text{if } x = a, \\ [0.5,0.7) & \text{if } x = b \end{array} \right.$$

Then $(X, \tilde{\lambda})$ induces the \mathcal{N} -function given by Table 7,

Table 7. Induced \mathcal{N} -function from $(X, \tilde{\lambda})$

\overline{X}	0	1	2	a	b
$\tilde{\lambda}_{\mathcal{N}}$	-0.6	-0.3	-0.4	-0.2	-0.2

and so

$$L_{\mathcal{N}}(\tilde{\lambda};t) = \begin{cases} \emptyset & \text{if } t \in [-1, -0.6), \\ \{0\} & \text{if } t \in [-0.6, -0.4), \\ \{0, 2\} & \text{if } t \in [-0.4, -0.3), \\ \{0, 1, 2\} & \text{if } t \in [-0.3, -0.2), \\ X & \text{if } t \in [-0.2, 0]. \end{cases}$$

Thus $L_{\mathcal{N}}(\tilde{\lambda};t)$ is a subalgebra of (X,*,0) for all $t \in [-1,0]$ with $L_{\mathcal{N}}(\tilde{\lambda};t) \neq \emptyset$. Since

$$\tilde{\lambda}_{\mathcal{N}}(b*1) = \tilde{\lambda}_{\mathcal{N}}(a) = -0.2 > -0.3 = \min\{\tilde{\lambda}_{\mathcal{N}}(b), \tilde{\lambda}(1)\},\$$

 $(X, \tilde{\lambda})$ is not an \mathcal{N}_2 -subalgebra of (X, *, 0).

Theorem 3.11. Given a subalgebra A of (X, *, 0) and $B_1, B_2 \in \tilde{\mathcal{P}}([0, 1])$ with $B_1 \subsetneq B_2$, the hyper structure $(X, \tilde{\lambda})$ over (X, *, 0) given by

$$\tilde{\lambda}: X \to \tilde{\mathcal{P}}([0,1]), \ x \mapsto \begin{cases} B_2 & \text{if } x \in A, \\ B_1 & \text{otherwise} \end{cases}$$
 (3.9)

is an \mathcal{N}_4 -subalgebra of (X, *, 0).

Proof. From (3.9), we have

$$(\forall x \in X) \left(\tilde{\lambda}_{\mathcal{N}}(x) = \left\{ \begin{array}{ll} \inf\{B_2\} - \sup\{B_2\} & \text{if } x \in A, \\ \inf\{B_1\} - \sup\{B_1\} & \text{otherwise.} \end{array} \right).$$
 (3.10)

Since $B_1 \subseteq B_2$, we have $\inf\{B_2\} - \sup\{B_2\} \le \inf\{B_1\} - \sup\{B_1\}$. For any $x, y \in X$, if $x, y \in A$, then $x * y \in A$ and so

$$\tilde{\lambda}_{\mathcal{N}}(x * y) = \inf\{B_2\} - \sup\{B_2\} = \max\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\}.$$

If $x, y \notin A$, then $\tilde{\lambda}_{\mathcal{N}}(x * y) \leq \inf\{B_1\} - \sup\{B_1\} = \max\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\}.$ Assume that $x \in A$ and $y \notin A$ (or, $x \notin A$ and $y \in A$). Then

$$\tilde{\lambda}_{\mathcal{N}}(x * y) \leq \inf B_1 - \sup B_1 = \max{\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\}}.$$

Therefore $(X, \tilde{\lambda})$ is an \mathcal{N}_4 -subalgebra of (X, *, 0).

The hyper structure $(X, \tilde{\lambda})$ in Theorem 3.11 is not an \mathcal{N}_2 -subalgebra of (X, *, 0) as seen in the following example.

EXAMPLE 3.12. Consider the BCK-algebra (X, *, 0) in Example 3.3, and take a subalgebra $A = \{0, 1, 2\}$ of (X, *, 0). Let (X, λ) be a hyper structure over (X, *, 0) given by

$$\tilde{\lambda}: X \to \tilde{\mathcal{P}}([0,1]), \ x \mapsto \left\{ \begin{array}{ll} (0.2,0.7) & \text{if } x \in A, \\ [0.3,0.6) & \text{otherwise.} \end{array} \right.$$

Then $(X, \tilde{\lambda})$ is an \mathcal{N}_4 -subalgebra of (X, *, 0) by Theorem 3.11. But it is not an \mathcal{N}_2 -subalgebra of (X, *, 0) since

$$\tilde{\lambda}_{\mathcal{N}}(3*1) = \tilde{\lambda}_{\mathcal{N}}(3) = -0.3 > -0.5 = \min\{\tilde{\lambda}_{\mathcal{N}}(3), \tilde{\lambda}_{\mathcal{N}}(1)\}.$$

Theorem 3.13. If $B_2 \subseteq B_1$ in Theorem 3.11, then $(X, \tilde{\lambda})$ is an \mathcal{N}_1 -subalgebra of (X, *, 0).

Proof. If $B_2 \subseteq B_1$, then $\inf\{B_2\} - \sup\{B_2\} \ge \inf\{B_1\} - \sup\{B_1\}$. For any $x, y \in X$, the following assertion is clear.

$$x, y \in A \implies \tilde{\lambda}(x * y) = \min{\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\}}.$$

If $x \notin A$ or $y \notin A$, then $\tilde{\lambda}_{\mathcal{N}}(x) = \inf\{B_1\} - \sup\{B_1\}$ or $\tilde{\lambda}_{\mathcal{N}}(y) = \inf\{B_1\} - \sup\{B_1\}$ $\sup\{B_1\}$. It follows that

$$\tilde{\lambda}_{\mathcal{N}}(x * y) \ge \inf\{B_1\} - \sup\{B_1\} = \min\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\}.$$

Therefore $(X, \tilde{\lambda})$ is an \mathcal{N}_1 -subalgebra of (X, *, 0).

The hyper structure (X, λ) in Theorem 3.13 is not an \mathcal{N}_3 -subalgebra of (X, *, 0) as seen in the following example.

Example 3.14. Consider the BCK-algebra (X, *, 0) in Example 3.3. Given a subalgebra $A = \{0,1,2\}$ of (X,*,0), let $(X,\tilde{\lambda})$ be a hyper structure over (X,*,0) given by

$$\tilde{\lambda}: X \to \tilde{\mathcal{P}}([0,1]), \ x \mapsto \left\{ \begin{array}{ll} \{0.3n \mid n \in (0.4,0.7]\} & \text{if } x \in A, \\ \{0.3n \mid n \in [0.2,0.9)\} & \text{otherwise.} \end{array} \right.$$

Then $(X, \tilde{\lambda})$ is an \mathcal{N}_1 -subalgebra of (X, *, 0) by Theorem 3.13. But it is not an \mathcal{N}_3 -subalgebra of (X, *, 0) since

$$\tilde{\lambda}_{\mathcal{N}}(3*1) = \tilde{\lambda}_{\mathcal{N}}(3) = -0.21 < -0.09 = \max{\{\tilde{\lambda}_{\mathcal{N}}(3), \tilde{\lambda}(1)\}}.$$

Theorem 3.15. Let $(X, \tilde{\lambda})$ be a hyper structure over (X, *, 0) in which $(X, \tilde{\lambda}_{inf})$ satisfies the condition (2.4). If $(X, \tilde{\lambda})$ is a (k, 1)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$, then it is an \mathcal{N}_4 -subalgebra of (X, *, 0).

Proof. Assume that $(X, \tilde{\lambda})$ is a (k, 1)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$ in which $(X, \tilde{\lambda}_{\inf})$ satisfies the condition (2.4). Then $\tilde{\lambda}_{\inf}(x*y) \leq \tilde{\lambda}_{\inf}(x)$ and $\tilde{\lambda}_{\inf}(x*y) \leq \tilde{\lambda}_{\inf}(y)$ for all $x, y \in X$, and $(X, \tilde{\lambda}_{\sup})$ is a 1-fuzzy subalgebra of X. It follows from (2.3) that

$$\begin{split} \tilde{\lambda}_{\mathcal{N}}(x*y) &= \tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\sup}(x*y) \\ &\leq \tilde{\lambda}_{\inf}(x*y) - \min\{\tilde{\lambda}_{\sup}(x), \tilde{\lambda}_{\sup}(y)\} \\ &= \max\{\tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\sup}(x), \ \tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\sup}(y)\} \\ &\leq \max\{\tilde{\lambda}_{\inf}(x) - \tilde{\lambda}_{\sup}(x), \ \tilde{\lambda}_{\inf}(y) - \tilde{\lambda}_{\sup}(y)\} \\ &= \max\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \end{split}$$

for all $x, y \in X$. Therefore $(X, \tilde{\lambda})$ is an \mathcal{N}_4 -subalgebra of (X, *, 0).

Corollary 3.16. Let $(X, \tilde{\lambda})$ be a hyper structure over (X, *, 0) in which $(X, \tilde{\lambda}_{inf})$ satisfies the condition (2.4). If $(X, \tilde{\lambda})$ is a (k, 3)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$, then it is an \mathcal{N}_4 -subalgebra of (X, *, 0).

In general, any \mathcal{N}_4 -subalgebra may not be a (k, 1)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$ as seen in the following example.

EXAMPLE 3.17. In Example 3.4, the \mathcal{N}_4 -subalgebra $(X, \tilde{\lambda})$ of (X, *, 0) is not a (k, 1)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$ since

$$\begin{split} \tilde{\lambda}_{\inf}(b*b) &= \tilde{\lambda}_{\inf}(0) = 0.2 < 0.3 = \min\{\tilde{\lambda}_{\inf}(b), \tilde{\lambda}_{\inf}(b)\}, \\ \tilde{\lambda}_{\inf}(b*c) &= \tilde{\lambda}_{\inf}(a) = 0.4 > 0.3 = \min\{\tilde{\lambda}_{\inf}(b), \tilde{\lambda}_{\inf}(c)\}, \\ \tilde{\lambda}_{\inf}(a*a) &= \tilde{\lambda}_{\inf}(0) = 0.2 < 0.4 = \max\{\tilde{\lambda}_{\inf}(a), \tilde{\lambda}_{\inf}(a)\}, \\ \tilde{\lambda}_{\inf}(b*c) &= \tilde{\lambda}_{\inf}(a) = 0.4 > 0.3 = \max\{\tilde{\lambda}_{\inf}(b), \tilde{\lambda}_{\inf}(c)\}. \end{split}$$

We consider a condition for an \mathcal{N}_4 -subalgebra to be a (k,1)-hyperfuzzy subalgebra for $k \in \{1,2,3,4\}$.

Theorem 3.18. If $(X, \tilde{\lambda})$ is an \mathcal{N}_4 -subalgebra of (X, *, 0) in which $\tilde{\lambda}_{\inf}$ is constant on X, then it is a (k, 1)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$.

Proof. Assume that $(X, \tilde{\lambda})$ is an \mathcal{N}_4 -subalgebra of (X, *, 0) in which $\tilde{\lambda}_{\inf}$ is constant on X. It is clear that (X, λ_{\inf}) is a k-fuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$. Let $\tilde{\lambda}_{\inf}(x) = t$ for all $x \in X$. Then

$$\begin{split} \tilde{\lambda}_{\sup}(x*y) &= \tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\mathcal{N}}(x*y) \\ &= t - \tilde{\lambda}_{\mathcal{N}}(x*y) \\ &\geq t - \max\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \\ &= \min\{t - \tilde{\lambda}_{\mathcal{N}}(x), t - \tilde{\lambda}_{\mathcal{N}}(y)\} \\ &= \min\{\tilde{\lambda}_{\sup}(x), \tilde{\lambda}_{\sup}(y)\} \end{split}$$

for all $x,y\in X$. Thus $(X,\tilde{\lambda}_{\sup})$ is a 1-fuzzy subalgebra of X. Therefore $(X,\tilde{\lambda})$ is a (k, 1)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$.

Corollary 3.19. If $(X, \tilde{\lambda})$ is an \mathcal{N}_2 -subalgebra of (X, *, 0) in which $\tilde{\lambda}_{inf}$ is constant on X, then it is a (k,1)-hyperfuzzy subalgebra of (X,*,0) for $k \in$ $\{1, 2, 3, 4\}.$

Theorem 3.20. Let $(X, \tilde{\lambda})$ be a hyper structure over (X, *, 0) in which (X, λ_{\sup}) satisfies the condition (2.5). If (X, λ) is a (4,k)-hyperfuzzy subalgebra of (X,*,0) for $k \in \{1,2,3,4\}$, then it is an \mathcal{N}_4 -subalgebra of (X,*,0).

Proof. Let $(X, \tilde{\lambda})$ be a (4, k)-hyperfuzzy subalgebra of (X, *, 0) in which $(X, \tilde{\lambda}_{\sup})$ satisfies the condition (2.5). Then $\lambda_{\sup}(x*y) \geq \lambda_{\sup}(x)$ and $\lambda_{\sup}(x*y) \geq \lambda_{\sup}(x*y)$ $\tilde{\lambda}_{\text{sup}}(y)$ for all $x, y \in X$. Since $(X, \tilde{\lambda}_{\text{inf}})$ is a 4-fuzzy subalgebra of (X, *, 0), we have

$$\begin{split} \tilde{\lambda}_{\mathcal{N}}(x*y) &= \tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\sup}(x*y) \\ &\leq \max\{\tilde{\lambda}_{\inf}(x), \tilde{\lambda}_{\inf}(y)\} - \tilde{\lambda}_{\sup}(x*y) \\ &= \max\{\tilde{\lambda}_{\inf}(x) - \tilde{\lambda}_{\sup}(x*y), \tilde{\lambda}_{\inf}(y) - \tilde{\lambda}_{\sup}(x*y)\} \\ &\leq \max\{\tilde{\lambda}_{\inf}(x) - \tilde{\lambda}_{\sup}(x), \tilde{\lambda}_{\inf}(y) - \tilde{\lambda}_{\sup}(y)\} \\ &= \max\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \end{split}$$

for all $x, y \in X$. Therefore $(X, \tilde{\lambda})$ is an \mathcal{N}_4 -subalgebra of (X, *, 0).

Corollary 3.21. Let $(X, \tilde{\lambda})$ be a hyper structure over (X, *, 0) in which $(X, \tilde{\lambda}_{sup})$ satisfies the condition (2.5). If $(X, \tilde{\lambda})$ is a (2, k)-hyperfuzzy subalgebra of (X,*,0) for $k \in \{1,2,3,4\}$, then it is an \mathcal{N}_4 -subalgebra of (X,*,0).

Theorem 3.22. If $(X, \tilde{\lambda})$ is an \mathcal{N}_4 -subalgebra of (X, *, 0) in which $\tilde{\lambda}_{\text{sup}}$ is constant on X, then it is a (4,k)-hyperfuzzy subalgebra of (X,*,0) for $k \in$ $\{1, 2, 3, 4\}.$

Proof. Let $(X, \tilde{\lambda})$ be an \mathcal{N}_4 -subalgebra of (X, *, 0) in which $\tilde{\lambda}_{\sup}$ is constant on X. It is clear that (X, λ_{\sup}) is a k-fuzzy subalgebra of X for $k \in \{1, 2, 3, 4\}$.

Let $\tilde{\lambda}_{\sup}(x) = t$ for all $x \in X$. Then

$$\begin{split} \tilde{\lambda}_{\inf}(x*y) &= \tilde{\lambda}_{\mathcal{N}}(x*y) + \tilde{\lambda}_{\sup}(x*y) \\ &\leq \max\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} + t \\ &= \max\{\tilde{\lambda}_{\mathcal{N}}(x) + t, \tilde{\lambda}_{\mathcal{N}}(y) + t\} \\ &= \max\{\tilde{\lambda}_{\inf}(x), \tilde{\lambda}_{\inf}(y)\} \end{split}$$

for all $x, y \in X$, that is, $(X, \tilde{\lambda}_{\inf})$ is a 4-fuzzy subalgebra of (X, *, 0). Hence $(X, \tilde{\lambda})$ is a (4, k)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$.

Corollary 3.23. If $(X, \tilde{\lambda})$ is an \mathcal{N}_2 -subalgebra of (X, *, 0) in which $\tilde{\lambda}_{sup}$ is constant on X, then it is a (4, k)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$.

Theorem 3.24. Let $(X, \tilde{\lambda})$ be a hyper structure over (X, *, 0) in which $(X, \tilde{\lambda}_{inf})$ satisfies the condition (2.5). If $(X, \tilde{\lambda})$ is a (k, 4)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$, then it is an \mathcal{N}_1 -subalgebra of (X, *, 0).

Proof. Assume that $(X, \tilde{\lambda})$ is a (k, 4)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$ in which $(X, \tilde{\lambda}_{\inf})$ satisfies the condition (2.5). Then $\tilde{\lambda}_{\inf}(x*y) \geq \tilde{\lambda}_{\inf}(x)$ and $\tilde{\lambda}_{\inf}(x*y) \geq \tilde{\lambda}_{\inf}(y)$ for all $x, y \in X$, and $(X, \tilde{\lambda}_{\sup})$ is a 4-fuzzy subalgebra of X. Hence

$$\begin{split} \tilde{\lambda}_{\mathcal{N}}(x*y) &= \tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\sup}(x*y) \\ &\geq \tilde{\lambda}_{\inf}(x*y) - \max\{\tilde{\lambda}_{\sup}(x), \tilde{\lambda}_{\sup}(y)\} \\ &= \min\{\tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\sup}(x), \ \tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\sup}(y)\} \\ &\geq \min\{\tilde{\lambda}_{\inf}(x) - \tilde{\lambda}_{\sup}(x), \ \tilde{\lambda}_{\inf}(x) - \tilde{\lambda}_{\sup}(y)\} \\ &= \min\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \end{split}$$

for all $x, y \in X$, and so $(X, \tilde{\lambda})$ is an \mathcal{N}_1 -subalgebra of (X, *, 0).

Corollary 3.25. Let $(X, \tilde{\lambda})$ be a hyper structure over (X, *, 0) in which $(X, \tilde{\lambda}_{\inf})$ satisfies the condition (2.5). If $(X, \tilde{\lambda})$ is a (k, 2)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$, then it is an \mathcal{N}_1 -subalgebra of (X, *, 0).

Theorem 3.26. Let $(X, \tilde{\lambda})$ be a hyper structure over (X, *, 0) in which $\tilde{\lambda}_{inf}$ is constant. Then every \mathcal{N}_1 -subalgebra is a (k, 4)-hyperfuzzy subalgebra for $k \in \{1, 2, 3, 4\}$.

Proof. Let $(X, \tilde{\lambda})$ be an \mathcal{N}_1 -subalgebra of (X, *, 0) in which $\tilde{\lambda}_{\inf}(x) = t$ for all $x \in X$. It is obvious that $(X, \tilde{\lambda}_{\inf})$ is a k-fuzzy subalgebra of (X, *, 0) for

 $k \in \{1, 2, 3, 4\}$. Also we have

$$\begin{split} \tilde{\lambda}_{\sup}(x*y) &= \tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\mathcal{N}}(x*y) = t - \tilde{\lambda}_{\mathcal{N}}(x*y) \\ &\leq t - \min\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \\ &= \max\{t - \tilde{\lambda}_{\mathcal{N}}(x), t - \tilde{\lambda}_{\mathcal{N}}(y)\} \\ &= \max\{\tilde{\lambda}_{\sup}(x), \tilde{\lambda}_{\sup}(y)\} \end{split}$$

for all $x, y \in X$, and hence $(X, \tilde{\lambda}_{\sup})$ is a 4-fuzzy subalgebra of (X, *, 0). Therefore $(X, \tilde{\lambda})$ is a (k, 4)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$. \square

Corollary 3.27. Let $(X, \tilde{\lambda})$ be a hyper structure over (X, *, 0) in which $\tilde{\lambda}_{\inf}$ is constant. Then every \mathcal{N}_3 -subalgebra is a (k,4)-hyperfuzzy subalgebra for $k \in \{1, 2, 3, 4\}.$

Theorem 3.28. Let $(X, \tilde{\lambda})$ be a hyper structure over (X, *, 0) in which $(X, \tilde{\lambda}_{SUD})$ satisfies the condition (2.4). For every $k \in \{1, 2, 3, 4\}$, every (1, k)-hyperfuzzy subalgebra is an \mathcal{N}_1 -subalgebra.

Proof. For every $k \in \{1, 2, 3, 4\}$, let $(X, \tilde{\lambda})$ be a (1, k)-hyperfuzzy subalgebra of (X, *, 0) in which $(X, \tilde{\lambda}_{\sup})$ satisfies the condition (2.4). Then $\tilde{\lambda}_{\sup}(x * y) \leq$ $\lambda_{\sup}(x)$ and $\lambda_{\sup}(x*y) \leq \lambda_{\sup}(y)$ for all $x,y \in X$. Since (X,λ_{\inf}) is a 1-fuzzy subalgebra of (X, *, 0), we have

$$\begin{split} \tilde{\lambda}_{\mathcal{N}}(x*y) &= \tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\sup}(x*y) \\ &\geq \min\{\tilde{\lambda}_{\inf}(x), \tilde{\lambda}_{\inf}(y)\} - \tilde{\lambda}_{\sup}(x*y) \\ &= \min\{\tilde{\lambda}_{\inf}(x) - \tilde{\lambda}_{\sup}(x*y), \tilde{\lambda}_{\inf}(y) - \tilde{\lambda}_{\sup}(x*y)\} \\ &\geq \min\{\tilde{\lambda}_{\inf}(x) - \tilde{\lambda}_{\sup}(x), \tilde{\lambda}_{\inf}(y) - \tilde{\lambda}_{\sup}(y)\} \\ &= \min\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \end{split}$$

for all $x, y \in X$. Thus $(X, \tilde{\lambda})$ is an \mathcal{N}_1 -subalgebra of (X, *, 0).

Corollary 3.29. Let (X, λ) be a hyper structure over (X, *, 0) in which $(X, \lambda_{\text{sup}})$ satisfies the condition (2.4). For every $k \in \{1, 2, 3, 4\}$, every (3, k)-hyperfuzzy subalgebra is an \mathcal{N}_1 -subalgebra.

Theorem 3.30. Let $(X, \tilde{\lambda})$ be an \mathcal{N}_1 -subalgebra of (X, *, 0). If $\tilde{\lambda}_{\text{sup}}$ is constant on X, then $(X, \tilde{\lambda})$ is a (1,k)-hyperfuzzy subalgebra of (X, *, 0) for $k \in$ $\{1, 2, 3, 4\}.$

Proof. Let $(X, \tilde{\lambda})$ be an \mathcal{N}_1 -subalgebra of (X, *, 0) such that $\tilde{\lambda}_{\sup}(x) = t$ for all $x \in X$. Obviously, $(X, \tilde{\lambda}_{\sup})$ is a k-fuzzy subalgebra of (X, *, 0) for $k \in$

 $\{1, 2, 3, 4\}$, and

$$\begin{split} \tilde{\lambda}_{\inf}(x*y) &= \tilde{\lambda}_{\sup}(x*y) + \tilde{\lambda}_{\mathcal{N}}(x*y) \\ &\geq t + \min\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \\ &= \min\{t + \tilde{\lambda}_{\mathcal{N}}(x), t + \tilde{\lambda}_{\mathcal{N}}(y)\} \\ &= \min\{\tilde{\lambda}_{\inf}(x), \tilde{\lambda}_{\inf}(y)\} \end{split}$$

for all $x, y \in X$, and so $(X, \tilde{\lambda}_{\inf})$ is a 1-fuzzy subalgebra of (X, *, 0). Therefore $(X, \tilde{\lambda})$ is a (1, k)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$.

Corollary 3.31. Let $(X, \tilde{\lambda})$ be an \mathcal{N}_3 -subalgebra of (X, *, 0) in which $\tilde{\lambda}_{\sup}$ is constant on X. Then $(X, \tilde{\lambda})$ is a (1, k)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$.

Theorem 3.32. Given a hyper structure $(X, \tilde{\lambda})$ over (X, *, 0) in which $\tilde{\lambda}_{inf}$ is constant on X, if $(X, \tilde{\lambda})$ is an \mathcal{N}_2 -subalgebra (resp., \mathcal{N}_3 -subalgebra) of (X, *, 0), then $(X, \tilde{\lambda})$ is a (k, 3)-hyperfuzzy (resp., (k, 2)-hyperfuzzy) subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$.

Proof. Let $(X, \tilde{\lambda})$ be an \mathcal{N}_2 -subalgebra of (X, *, 0) such that $\tilde{\lambda}_{\inf}(x) = t$ for all $x \in X$. Then $(X, \tilde{\lambda}_{\inf})$ is a k-fuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$, and

$$\begin{split} \tilde{\lambda}_{\sup}(x*y) &= \tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\mathcal{N}}(x*y) = t - \tilde{\lambda}_{\mathcal{N}}(x*y) \\ &\geq t - \min\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \\ &= \max\{t - \tilde{\lambda}_{\mathcal{N}}(x), t - \tilde{\lambda}_{\mathcal{N}}(y)\} \\ &= \max\{\tilde{\lambda}_{\sup}(x), \tilde{\lambda}_{\sup}(y)\} \end{split}$$

for all $x, y \in X$, and so $(X, \tilde{\lambda}_{\sup})$ is a 3-fuzzy subalgebra of (X, *, 0). Therefore $(X, \tilde{\lambda})$ is a (k, 3)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$. Similarly, if $(X, \tilde{\lambda})$ is an \mathcal{N}_3 -subalgebra of (X, *, 0) such that $\tilde{\lambda}_{\inf}(x) = t$ for all $x \in X$, then $(X, \tilde{\lambda})$ is a (k, 2)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$. \square

Theorem 3.33. Let $(X, \tilde{\lambda})$ be a (k, 2)-hyperfuzzy (resp., (k, 3)-hyperfuzzy) subalgebra of (X, *, 0) in which $(X, \tilde{\lambda}_{inf})$ satisfies the condition (2.5) (resp., (2.4)) for $k \in \{1, 2, 3, 4\}$. Then $(X, \tilde{\lambda})$ is an \mathcal{N}_3 -subalgebra (resp., \mathcal{N}_2 -subalgebra) of (X, *, 0).

Proof. Assume that $(X, \tilde{\lambda})$ is a (k, 2)-hyperfuzzy subalgebra of (X, *, 0) in which $(X, \tilde{\lambda}_{\inf})$ satisfies the condition (2.5). Then $\tilde{\lambda}_{\inf}(x*y) \geq \tilde{\lambda}_{\inf}(x)$ and $\tilde{\lambda}_{\inf}(x*y) \geq \tilde{\lambda}_{\inf}(y)$ for all $x, y \in X$. Since $(X, \tilde{\lambda}_{\sup})$ is a 2-fuzzy subalgebra of (X, *, 0), it

follows that

$$\begin{split} \tilde{\lambda}_{\mathcal{N}}(x*y) &= \tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\sup}(x*y) \\ &\geq \tilde{\lambda}_{\inf}(x*y) - \min\{\tilde{\lambda}_{\sup}(x), \tilde{\lambda}_{\sup}(y)\} \\ &= \max\{\tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\sup}(x), \tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\sup}(y)\} \\ &\geq \max\{\tilde{\lambda}_{\inf}(x) - \tilde{\lambda}_{\sup}(x), \tilde{\lambda}_{\inf}(y) - \tilde{\lambda}_{\sup}(y)\} \\ &= \max\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \end{split}$$

for all $x, y \in X$. Hence $(X, \tilde{\lambda})$ is an \mathcal{N}_3 -subalgebra of (X, *, 0). Similarly, if (X,λ) is a (k,3)-hyperfuzzy subalgebra of (X,*,0) for $k \in \{1,2,3,4\}$ in which $(X, \tilde{\lambda}_{inf})$ satisfies the condition (2.4), then it is an \mathcal{N}_2 -subalgebra of (X, *, 0).

Theorem 3.34. Let $(X, \tilde{\lambda})$ be a hyper structure over (X, *, 0) in which $(X, \tilde{\lambda}_{sup})$ satisfies the condition (2.5) (resp., (2.4)). If $(X, \tilde{\lambda})$ is a (2, k)-hyperfuzzy (resp., (3,k)-hyperfuzzy) subalgebra of (X,*,0) for $k \in \{1,2,3,4\}$, then (X,λ) is an \mathcal{N}_2 -subalgebra (resp., \mathcal{N}_3 -subalgebra) of (X, *, 0).

Proof. Let $(X, \tilde{\lambda})$ be a (2, k)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$ in which $(X, \hat{\lambda}_{\sup})$ satisfies the condition (2.5). Then $\hat{\lambda}_{\sup}(x * y) \geq \hat{\lambda}_{\sup}(x)$ and $\lambda_{\sup}(x*y) \geq \lambda_{\sup}(y)$ for all $x, y \in X$. Since (X, λ_{\inf}) is a 2-fuzzy subalgebra of (X, *, 0), we have

$$\begin{split} \tilde{\lambda}_{\mathcal{N}}(x*y) &= \tilde{\lambda}_{\inf}(x*y) - \tilde{\lambda}_{\sup}(x*y) \\ &\leq \min\{\tilde{\lambda}_{\inf}(x), \tilde{\lambda}_{\inf}(y)\} - \tilde{\lambda}_{\sup}(x*y) \\ &= \min\{\tilde{\lambda}_{\inf}(x) - \tilde{\lambda}_{\sup}(x*y), \tilde{\lambda}_{\inf}(y) - \tilde{\lambda}_{\sup}(x*y)\} \\ &\leq \min\{\tilde{\lambda}_{\inf}(x) - \tilde{\lambda}_{\sup}(x), \tilde{\lambda}_{\inf}(y) - \tilde{\lambda}_{\sup}(y)\} \\ &= \min\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} \end{split}$$

for all $x, y \in X$. Thus $(X, \tilde{\lambda})$ is an \mathcal{N}_2 -subalgebra of (X, *, 0). Similarly, we can verify that if (X, λ) is a (3, k)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$ in which $(X, \lambda_{\text{sup}})$ satisfies the condition (2.4), then (X, λ) is an \mathcal{N}_3 -subalgebra of (X, *, 0).

Theorem 3.35. Given a hyper structure $(X, \tilde{\lambda})$ over (X, *, 0) in which $\tilde{\lambda}_{\text{sup}}$ is constant on X, if (X, λ) is an \mathcal{N}_2 -subalgebra (resp., \mathcal{N}_3 -subalgebra) of (X,*,0), then $(X,\tilde{\lambda})$ is a (2,k)-hyperfuzzy (resp., (3,k)-hyperfuzzy) subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$.

Proof. Assume that $(X, \tilde{\lambda})$ is an \mathcal{N}_2 -subalgebra of (X, *, 0) such that $\tilde{\lambda}_{\sup}(x) =$ t for all $x \in X$. Obviously, $(X, \lambda_{\text{sup}})$ is a k-fuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$, and

$$\begin{split} \tilde{\lambda}_{\inf}(x*y) &= \tilde{\lambda}_{\mathcal{N}}(x*y) + \tilde{\lambda}_{\sup}(x*y) = \tilde{\lambda}_{\mathcal{N}}(x*y) + t \\ &\leq \min\{\tilde{\lambda}_{\mathcal{N}}(x), \tilde{\lambda}_{\mathcal{N}}(y)\} + t \\ &= \min\{\tilde{\lambda}_{\mathcal{N}}(x) + t, \tilde{\lambda}_{\mathcal{N}}(y) + t\} \\ &= \min\{\tilde{\lambda}_{\inf}(x), \tilde{\lambda}_{\inf}(y)\} \end{split}$$

for all $x, y \in X$. Hence $(X, \tilde{\lambda}_{\inf})$ is a 2-fuzzy subalgebra of (X, *, 0), and therefore $(X, \tilde{\lambda})$ is a (2, k)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$. Similarly, we can prove that if $(X, \tilde{\lambda})$ is an \mathcal{N}_3 -subalgebra of (X, *, 0) such that $\tilde{\lambda}_{\sup}(x) = t$ for all $x \in X$, then $(X, \tilde{\lambda})$ is a (3, k)-hyperfuzzy subalgebra of (X, *, 0) for $k \in \{1, 2, 3, 4\}$.

Acknowledgments

The research is supported by the Iranian National Science Foundation (Grant No. 96008529).

References

- H. Bordbar, R. A. Borzooei, Y. B. Jun, Uni-Soft Commutative Ideals and Closed Uni-Soft Ideals in BCI-Algebras, New Mathematics and Natural Computation, 14(2), (2018), page 1-13.
- H. Bordbar, S. S. Ahn, M. M. Zahed, Y. B. Jun, Semiring structures based on meet and plus ideals in lower BCK-semilattices, *Journal of Computational Analysis and Applica*tions, 23(5), (2017), 945-954.
- H. Bordbar, M. Novak, I. Cristea, Properties of reduced meet ideals in lower BCKsemilattices, APLIMAT 2018, 97-109.
- H. Bordbar, I. Cristea, Height of Prime Hyperideals in Krasner Hyperrings, Filomat, 19(31), 6153-6163.
- H. Bordbar, M. M. Zahedi, A Finite type Closure Operations on BCK-algebras, Applied Math. Inf. Sci. Lett., 4(2), (2016), 1-9.
- H. Bordbar, M. M. Zahedi, Semi-prime Closure Operations on BCK-algebra, Commun. Korean Math. Soc., 30(4), (2015), 385-402.
- H. Bordbar, M. M. Zahedi, S. S. Ahn, Y. B. Jun, Weak closure operations on ideals of BCK-algebras, *Journal of Computational Analysis and Applications*, 23(2), (2017), 51-64.
- H. Bordbar, M. M. Zahedi, Y. B. Jun, Relative annihilators in lower BCK-semilattices, Math. Sci. Lett., 6(2), (2017), 1-7.
- J. Ghosh, T. K. Samanta, Hyperfuzzy sets and hyperfuzzy group, Int. J. Advanced Sci Tech., 41, (2012), 27–37.
- 10. Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006.
- 11. Y. B. Jun, K. Hur, K. J. Lee, Hyperfuzzy subalgebras of *BCK/BCI*-algebras, **Ann. Fuzzy Math. Inform.**, (in press).
- 12. Y. B. Jun, K. J. Lee, S. Z. Song, \mathcal{N} -ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc., **22**, (2009), 417–437.
- 13. F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm (1934) 45–49.

- 14. J. Meng, Y. B. Jun, BCK-algebras, $Kyungmoon\ Sa\ Co.,\ Seoul,\ 1994.$
- 15. L. A. Zadeh, Fuzzy sets, Inform. Control, $\boldsymbol{8},$ (1965), 338–353.