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1. Introduction

Fuzzy set theory is firstly introduced by Zadeh [15] and opened a new path
of thinking to mathematicians, physicists, chemists, engineers and many others
due to its diverse applications in various fields. Algebraic hyperstructure, which
is introduced by the French mathematician Marty [13], represent a natural ex-
tension of classical algebraic structures. Since then, many papers and several
books have been written in this area. Nowadays, hyperstructures have a lot
of applications in several domains of mathematics and computer sciences. In
a classical algebraic structure, the composition of two elements is an element,
while in an algebraic hyperstructure, the composition of two elements is a set.
The study of fuzzy hyperstructures is an interesting research area of fuzzy sets.
As a generalization of fuzzy sets and interval-valued fuzzy sets, Ghosh and
Samanta [9] introduced the notion of hyperfuzzy sets, and applied it to group
theory. Jun et al. [11] applied the hyperfuzzy sets to BCK/BCI-algebras,
and introduced the notion of k-fuzzy substructure for k ∈ {1, 2, 3, 4}. They
introduced the concepts of hyperfuzzy substructures of several types by using
k-fuzzy substructures, and investigated their basic properties. They also intro-
duced the notion of hyperfuzzy subalgebras of type (i, j) for i, j ∈ {1, 2, 3, 4}.
Because no negative meaning of information is suggested, we now feel a need to
deal with negative information. To do so, we also feel a need to supply mathe-
matical tool. To attain such object, Jun et al. [12] introduced and used a new
function which is called negative-valued function. The important achievement
of the paper [12] was that one can deal with positive and negative informa-
tion simultaneously by combining ideas in [12] and already well known positive
information.

In this paper, we study N -structures in BCK/BCI-algebras induced from
hyperfuzzy structures. We introduce the notions of Nk-subalgebras in BCK/BCI-
algebras for k ∈ {1, 2, 3, 4}, and investigate several properties. We investi-
gate relations between Nk-subalgebras induced from hyperfuzzy sets and (i, j)-
hyperfuzzy subalgebras in BCK/BCI-algebras for i, j, k ∈ {1, 2, 3, 4}.

2. Preliminaries

By a BCI-algebra we mean a system X := (X, ∗, 0) ∈ K(τ) in which the
following axioms hold:

(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(II) (x ∗ (x ∗ y)) ∗ y = 0,

(III) x ∗ x = 0,

(IV) x ∗ y = y ∗ x = 0 ⇒ x = y

for all x, y, z ∈ X. If a BCI-algebra X satisfies 0 ∗x = 0 for all x ∈ X, then we
say that X is a BCK-algebra. We can define a partial ordering ≤ by

(∀x, y ∈ X) (x ≤ y ⇐⇒ x ∗ y = 0).



N -subalgebras of BCK/BCI-algebras which are Induced from hyperfuzzy Structures 181

In a BCK/BCI-algebra X, the following hold:

(∀x ∈ X) (x ∗ 0 = x), (2.1)
(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y). (2.2)

A non-empty subset S of a BCK/BCI-algebra X is called a subalgebra of
X if x ∗ y ∈ S for all x, y ∈ S.

We refer the reader to the books [10] and [14] for further information re-
garding BCK/BCI-algebras.

By a fuzzy structure over a nonempty set X we mean an ordered pair (X, ρ)

of X and a fuzzy set ρ on X.
Denote by F(X, [−1, 0]) the collection of functions from a set X to [−1, 0].

We say that an element of F(X, [−1, 0]) is a negative-valued function from X

to [−1, 0] (briefly, N -function on X.) By an N -structure we mean an ordered
pair (X,λ) of X and an N -function λ on X.

Let X be a nonempty set. A mapping λ̃ : X → P̃([0, 1]) is called a hyperfuzzy
set over X (see [9]), where P̃([0, 1]) is the family of all nonempty subsets of
[0, 1]. An ordered pair (X, λ̃) is called a hyper structure over X.

Given a hyper structure (X, λ̃) over a nonempty set X, we consider two
fuzzy structures (X, λ̃inf) and (X, λ̃sup) over X in which

λ̃inf : X → [0, 1], x 7→ inf{λ̃(x)},

λ̃sup : X → [0, 1], x 7→ sup{λ̃(x)}.

Given a nonempty set X, let BK(X) and BI(X) denote the collection of
all BCK-algebras and all BCI-algebras, respectively. Also B(X) := BK(X) ∪
BI(X).

Definition 2.1 ([11]). For any (X, ∗, 0) ∈ B(X), a fuzzy structure (X,λ) over
(X, ∗, 0) is called a

• fuzzy subalgebra of (X, ∗, 0) with type 1 (briefly, 1-fuzzy subalgebra of
(X, ∗, 0)) if

(∀x, y ∈ X) (λ(x ∗ y) ≥ min{λ(x), λ(y)}) , (2.3)

• fuzzy subalgebra of (X, ∗, 0) with type 2 (briefly, 2-fuzzy subalgebra of
(X, ∗, 0)) if

(∀x, y ∈ X) (λ(x ∗ y) ≤ min{λ(x), λ(y)}) , (2.4)

• fuzzy subalgebra of (X, ∗, 0) with type 3 (briefly, 3-fuzzy subalgebra of
(X, ∗, 0)) if

(∀x, y ∈ X) (λ(x ∗ y) ≥ max{λ(x), λ(y)}) , (2.5)

• fuzzy subalgebra of (X, ∗, 0) with type 4 (briefly, 4-fuzzy subalgebra of
(X, ∗, 0)) if

(∀x, y ∈ X) (λ(x ∗ y) ≤ max{λ(x), λ(y)}) . (2.6)
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Definition 2.2 ([11]). For any (X, ∗, 0) ∈ B(X) and i, j ∈ {1, 2, 3, 4}, a hy-
per structure (X, λ̃) over (X, ∗, 0) is called an (i, j)-hyperfuzzy subalgebra of
(X, ∗, 0) if (X, λ̃inf) is an i-fuzzy subalgebra of (X, ∗, 0) and (X, λ̃sup) is a j-
fuzzy subalgebra of (X, ∗, 0).

3. N -subalgebras based on hyperfuzzy structures

In what follows, let (X, ∗, 0) ∈ B(X) unless otherwise specified.

Definition 3.1. Given a hyper structure (X, λ̃) over (X, ∗, 0), we define an
N -function on (X, ∗, 0) as follows:

λ̃N : X → [−1, 0], x 7→ λ̃inf(x)− λ̃sup(x),

which is called an induced N -function from (X, λ̃) on (X, ∗, 0).

Definition 3.2. A hyper structure (X, λ̃) over (X, ∗, 0) is called an

• N1-subalgebra of (X, ∗, 0) if

(∀x, y ∈ X)
(
λ̃N (x ∗ y) ≥ min{λ̃N (x), λ̃N (y)}

)
, (3.1)

• N2-subalgebra of (X, ∗, 0) if

(∀x, y ∈ X)
(
λ̃N (x ∗ y) ≤ min{λ̃N (x), λ̃N (y)}

)
, (3.2)

• N3-subalgebra of (X, ∗, 0) if

(∀x, y ∈ X)
(
λ̃N (x ∗ y) ≥ max{λ̃N (x), λ̃N (y)}

)
, (3.3)

• N4-subalgebra of (X, ∗, 0) if

(∀x, y ∈ X)
(
λ̃N (x ∗ y) ≤ max{λ̃N (x), λ̃N (y)}

)
. (3.4)

Example 3.3. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the binary
operation ∗ which is given in Table 1 (see [14]).

Table 1. Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 3 4 1 0
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Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which λ̃ is given as follows:

λ̃ : X → P̃([0, 1]), x 7→



[0.2, 0.4) if x = 0,
(0.1, 0.3] ∪ [0.5, 0.9) if x = 1,
[0.1, 0.3] if x = 2,
[0.3, 0.4) ∪ [0.5, 0.6] if x = 3,
[0.3, 0.8] if x = 4.

Then the induced N -function from (X, λ̃) is given by Table 2.

Table 2. Induced N -function from (X, λ̃)

X 0 1 2 3 4

λ̃N −0.2 −0.8 −0.2 −0.3 −0.5

Example 3.4. Consider a BCI-algebra X = {0, 1, a, b, c} with the binary
operation ∗ which is given in Table 3 (see [14]).

Table 3. Cayley table for the binary operation “∗”

∗ 0 1 a b c

0 0 0 a b c

1 1 0 a b c

a a a 0 c b

b b b c 0 a

c c c b a 0

Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which λ̃ is given as follows:

λ̃ : X → P̃([0, 1]), x 7→


[0.2, 1.0) if x = 0,
(0.1, 0.4] ∪ [0.5, 0.8] if x = 1,
[0.4, 0.9] if x = a,
[0.3, 0.6) if x ∈ {b, c}

The induced N -function from (X, λ̃) is given by Table 4.

Table 4. Induced N -function from (X, λ̃)

X 0 1 a b c

λ̃N −0.8 −0.7 −0.5 −0.3 −0.3

It is routine to verify that (X, λ̃) is an N4-subalgebra of (X, ∗, 0).
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Given a hyper structure (X, λ̃) over (X, ∗, 0) and t ∈ [−1, 0], consider the
following sets:

UN (λ̃; t) := {x ∈ X | λ̃N (x) ≥ t}, (3.5)

LN (λ̃; t) := {x ∈ X | λ̃N (x) ≤ t}. (3.6)

Theorem 3.5. A hyper structure (X, λ̃) over (X, ∗, 0) is an N1-subalgebra of
(X, ∗, 0) if and only if the following assertion is valid.

(∀t ∈ [−1, 0])
(
UN (λ̃; t) 6= ∅ ⇒ UN (λ̃; t) is a subalgebra of (X, ∗, 0)

)
. (3.7)

Proof. Let (X, λ̃) be an N1-subalgebra of (X, ∗, 0) and let t ∈ [−1, 0] be such
that UN (λ̃; t) is nonempty. If x, y ∈ UN (λ̃; t), then λ̃N (x) ≥ t and λ̃N (y) ≥ t.
It follows from (3.1) that

λ̃N (x ∗ y) ≥ min{λ̃N (x), λ̃N (y)} ≥ t

and so that x ∗ y ∈ UN (λ̃; t). Hence UN (λ̃; t) is a subalgebra of (X, ∗, 0).
Conversely, assume that UN (λ̃; t) is a subalgebra of (X, ∗, 0) for all t ∈ [−1, 0]

with UN (λ̃; t) 6= ∅. If there exist a, b ∈ X such that

λ̃N (a ∗ b) < min{λ̃N (a), λ̃N (b)},

then a, b ∈ UN (λ̃; t) and so a ∗ b ∈ UN (λ̃; t) by taking t := min{λ̃N (a), λ̃N (b)}.
Thus λ̃N (a ∗ b) ≥ t, which is a contradiction. Hence

λ̃N (x ∗ y) ≥ min{λ̃N (x), λ̃N (y)}

for all x, y ∈ X. Therefore (X, λ̃) is an N1-subalgebra of (X, ∗, 0). �

Corollary 3.6. If a hyper structure (X, λ̃) over (X, ∗, 0) is an N3-subalgebra
of (X, ∗, 0), then the assertion (3.7) is valid.

The converse of Corollary 3.6 may not be true as seen in the following
example.

Example 3.7. Consider a BCI-algebra X = {0, 1, 2, a, b} with the binary
operation ∗ which is given in Table 5 (see [14]).

Table 5. Cayley table for the binary operation “∗”

∗ 0 1 2 a b

0 0 0 0 a a

1 1 0 1 b a

2 2 2 0 a a

a a a a 0 0

b b a b 1 0
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Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which λ̃ is given as follows:

λ̃ : X → P̃([0, 1]), x 7→



[0.2, 0.4) if x = 0,
(0.1, 0.4] ∪ [0.5, 0.7] if x = 1,
[0.5, 0.8] if x = 2,
[0.4, 0.5) ∪ (0.6, 0.8] if x = a,
[0.3, 0.9) if x = b

The induced N -function from (X, λ̃) is given by Table 6.

Table 6. Induced N -function from (X, λ̃)

X 0 1 2 a b

λ̃N −0.2 −0.6 −0.3 −0.4 −0.6

Hence we have

UN (λ̃; t) =



∅ if t ∈ (−0.2, 0],
{0} if t ∈ (−0.3,−0.2],
{0, 2} if t ∈ (−0.4,−0.3],
{0, 2, a} if t ∈ (−0.6,−0.4],
X if t ∈ [−1,−0.6],

and so UN (λ̃; t) is a subalgebra of (X, ∗, 0) for all t ∈ [−1, 0] with UN (λ̃; t) 6= ∅.
But (X, λ̃) is not an N3-subalgebra of (X, ∗, 0) since

λ̃N (b ∗ a) = λ̃N (1) = −0.6 < −0.4 = max{λ̃N (b), λ̃N (a)}.

Theorem 3.8. A hyper structure (X, λ̃) over (X, ∗, 0) is an N4-subalgebra of
(X, ∗, 0) if and only if the following assertion is valid.

(∀t ∈ [−1, 0])
(
LN (λ̃; t) 6= ∅ ⇒ LN (λ̃; t) is a subalgebra of (X, ∗, 0)

)
. (3.8)

Proof. Assume that (X, λ̃) is an N4-subalgebra of (X, ∗, 0) and let t ∈ [−1, 0]

be such that LN (λ̃; t) is nonempty. If x, y ∈ LN (λ̃; t), then λ̃N (x) ≤ t and
λ̃N (y) ≤ t. It follows from (3.4) that

λ̃N (x ∗ y) ≤ max{λ̃N (x), λ̃N (y)} ≤ t

and so that x ∗ y ∈ LN (λ̃; t). Hence LN (λ̃; t) is a subalgebra of (X, ∗, 0).
Conversely, suppose that LN (λ̃; t) is a subalgebra of (X, ∗, 0) for all t ∈

[−1, 0] with LN (λ̃; t) 6= ∅. Assume that there exist a, b ∈ X such that

λ̃N (a ∗ b) > max{λ̃N (a), λ̃N (b)}.

If we take t := max{λ̃N (a), λ̃N (b)}, then a, b ∈ LN (λ̃; t) and so a∗b ∈ LN (λ̃; t).
Thus λ̃N (a ∗ b) ≤ t, which is a contradiction. Hence

λ̃N (x ∗ y) ≤ max{λ̃N (x), λ̃N (y)}

for all x, y ∈ X. Therefore (X, λ̃) is an N4-subalgebra of (X, ∗, 0). �
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Corollary 3.9. If a hyper structure (X, λ̃) over (X, ∗, 0) is an N2-subalgebra
of (X, ∗, 0), then the assertion (3.8) is valid.

The converse of Corollary 3.9 may not be true as seen in the following
example.

Example 3.10. Let X = {0, 1, 2, a, b} be the BCI-algebra in Example 3.7.
Consider a hyper structure (X, λ̃) over (X, ∗, 0) in which λ̃ is given as follows:

λ̃ : X → P̃([0, 1]), x 7→



[0.1, 0.3] ∪ (0.4, 0.7) if x = 0,
(0.2, 0.5] if x = 1,
[0.3, 0.7] if x = 2,
[0.4, 0.5) ∪ (0.5, 0.6] if x = a,
[0.5, 0.7) if x = b

Then (X, λ̃) induces the N -function given by Table 7,

Table 7. Induced N -function from (X, λ̃)

X 0 1 2 a b

λ̃N −0.6 −0.3 −0.4 −0.2 −0.2

and so

LN (λ̃; t) =



∅ if t ∈ [−1,−0.6),
{0} if t ∈ [−0.6,−0.4),
{0, 2} if t ∈ [−0.4,−0.3),
{0, 1, 2} if t ∈ [−0.3,−0.2),
X if t ∈ [−0.2, 0].

Thus LN (λ̃; t) is a subalgebra of (X, ∗, 0) for all t ∈ [−1, 0] with LN (λ̃; t) 6= ∅.
Since

λ̃N (b ∗ 1) = λ̃N (a) = −0.2 > −0.3 = min{λ̃N (b), λ̃(1)},

(X, λ̃) is not an N2-subalgebra of (X, ∗, 0).

Theorem 3.11. Given a subalgebra A of (X, ∗, 0) and B1, B2 ∈ P̃([0, 1]) with
B1 ( B2, the hyper structure (X, λ̃) over (X, ∗, 0) given by

λ̃ : X → P̃([0, 1]), x 7→
{

B2 if x ∈ A,

B1 otherwise
(3.9)

is an N4-subalgebra of (X, ∗, 0).

Proof. From (3.9), we have

(∀x ∈ X)

(
λ̃N (x) =

{
inf{B2} − sup{B2} if x ∈ A,

inf{B1} − sup{B1} otherwise.

)
. (3.10)
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Since B1 ( B2, we have inf{B2} − sup{B2} ≤ inf{B1} − sup{B1}. For any
x, y ∈ X, if x, y ∈ A, then x ∗ y ∈ A and so

λ̃N (x ∗ y) = inf{B2} − sup{B2} = max{λ̃N (x), λ̃N (y)}.

If x, y /∈ A, then λ̃N (x ∗ y) ≤ inf{B1} − sup{B1} = max{λ̃N (x), λ̃N (y)}.
Assume that x ∈ A and y /∈ A (or, x /∈ A and y ∈ A). Then

λ̃N (x ∗ y) ≤ inf B1 − supB1 = max{λ̃N (x), λ̃N (y)}.

Therefore (X, λ̃) is an N4-subalgebra of (X, ∗, 0). �

The hyper structure (X, λ̃) in Theorem 3.11 is not an N2-subalgebra of
(X, ∗, 0) as seen in the following example.

Example 3.12. Consider the BCK-algebra (X, ∗, 0) in Example 3.3, and take
a subalgebra A = {0, 1, 2} of (X, ∗, 0). Let (X, λ̃) be a hyper structure over
(X, ∗, 0) given by

λ̃ : X → P̃([0, 1]), x 7→
{

(0.2, 0.7) if x ∈ A,
[0.3, 0.6) otherwise.

Then (X, λ̃) is an N4-subalgebra of (X, ∗, 0) by Theorem 3.11. But it is not an
N2-subalgebra of (X, ∗, 0) since

λ̃N (3 ∗ 1) = λ̃N (3) = −0.3 > −0.5 = min{λ̃N (3), λ̃N (1)}.

Theorem 3.13. If B2 ( B1 in Theorem 3.11, then (X, λ̃) is an N1-subalgebra
of (X, ∗, 0).

Proof. If B2 ( B1, then inf{B2} − sup{B2} ≥ inf{B1} − sup{B1}. For any
x, y ∈ X, the following assertion is clear.

x, y ∈ A ⇒ λ̃(x ∗ y) = min{λ̃N (x), λ̃N (y)}.

If x /∈ A or y /∈ A, then λ̃N (x) = inf{B1} − sup{B1} or λ̃N (y) = inf{B1} −
sup{B1}. It follows that

λ̃N (x ∗ y) ≥ inf{B1} − sup{B1} = min{λ̃N (x), λ̃N (y)}.

Therefore (X, λ̃) is an N1-subalgebra of (X, ∗, 0). �

The hyper structure (X, λ̃) in Theorem 3.13 is not an N3-subalgebra of
(X, ∗, 0) as seen in the following example.

Example 3.14. Consider the BCK-algebra (X, ∗, 0) in Example 3.3. Given
a subalgebra A = {0, 1, 2} of (X, ∗, 0), let (X, λ̃) be a hyper structure over
(X, ∗, 0) given by

λ̃ : X → P̃([0, 1]), x 7→
{

{0.3n | n ∈ (0.4, 0.7]} if x ∈ A,

{0.3n | n ∈ [0.2, 0.9)} otherwise.
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Then (X, λ̃) is an N1-subalgebra of (X, ∗, 0) by Theorem 3.13. But it is not an
N3-subalgebra of (X, ∗, 0) since

λ̃N (3 ∗ 1) = λ̃N (3) = −0.21 < −0.09 = max{λ̃N (3), λ̃(1)}.

Theorem 3.15. Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which (X, λ̃inf)

satisfies the condition (2.4). If (X, λ̃) is a (k, 1)-hyperfuzzy subalgebra of
(X, ∗, 0) for k ∈ {1, 2, 3, 4}, then it is an N4-subalgebra of (X, ∗, 0).

Proof. Assume that (X, λ̃) is a (k, 1)-hyperfuzzy subalgebra of (X, ∗, 0) for
k ∈ {1, 2, 3, 4} in which (X, λ̃inf) satisfies the condition (2.4). Then λ̃inf(x∗y) ≤
λ̃inf(x) and λ̃inf(x ∗ y) ≤ λ̃inf(y) for all x, y ∈ X, and (X, λ̃sup) is a 1-fuzzy
subalgebra of X. It follows from (2.3) that

λ̃N (x ∗ y) = λ̃inf(x ∗ y)− λ̃sup(x ∗ y)

≤ λ̃inf(x ∗ y)−min{λ̃sup(x), λ̃sup(y)}

= max{λ̃inf(x ∗ y)− λ̃sup(x), λ̃inf(x ∗ y)− λ̃sup(y)}

≤ max{λ̃inf(x)− λ̃sup(x), λ̃inf(y)− λ̃sup(y)}

= max{λ̃N (x), λ̃N (y)}

for all x, y ∈ X. Therefore (X, λ̃) is an N4-subalgebra of (X, ∗, 0). �

Corollary 3.16. Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which (X, λ̃inf)

satisfies the condition (2.4). If (X, λ̃) is a (k, 3)-hyperfuzzy subalgebra of
(X, ∗, 0) for k ∈ {1, 2, 3, 4}, then it is an N4-subalgebra of (X, ∗, 0).

In general, any N4-subalgebra may not be a (k, 1)-hyperfuzzy subalgebra of
(X, ∗, 0) for k ∈ {1, 2, 3, 4} as seen in the following example.

Example 3.17. In Example 3.4, the N4-subalgebra (X, λ̃) of (X, ∗, 0) is not a
(k, 1)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈ {1, 2, 3, 4} since

λ̃inf(b ∗ b) = λ̃inf(0) = 0.2 < 0.3 = min{λ̃inf(b), λ̃inf(b)},

λ̃inf(b ∗ c) = λ̃inf(a) = 0.4 > 0.3 = min{λ̃inf(b), λ̃inf(c)},

λ̃inf(a ∗ a) = λ̃inf(0) = 0.2 < 0.4 = max{λ̃inf(a), λ̃inf(a)},

λ̃inf(b ∗ c) = λ̃inf(a) = 0.4 > 0.3 = max{λ̃inf(b), λ̃inf(c)}.

We consider a condition for an N4-subalgebra to be a (k, 1)-hyperfuzzy sub-
algebra for k ∈ {1, 2, 3, 4}.

Theorem 3.18. If (X, λ̃) is an N4-subalgebra of (X, ∗, 0) in which λ̃inf is
constant on X, then it is a (k, 1)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈
{1, 2, 3, 4}.
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Proof. Assume that (X, λ̃) is an N4-subalgebra of (X, ∗, 0) in which λ̃inf is
constant on X. It is clear that (X, λ̃inf) is a k-fuzzy subalgebra of (X, ∗, 0) for
k ∈ {1, 2, 3, 4}. Let λ̃inf(x) = t for all x ∈ X. Then

λ̃sup(x ∗ y) = λ̃inf(x ∗ y)− λ̃N (x ∗ y)

= t− λ̃N (x ∗ y)

≥ t−max{λ̃N (x), λ̃N (y)}

= min{t− λ̃N (x), t− λ̃N (y)}

= min{λ̃sup(x), λ̃sup(y)}

for all x, y ∈ X. Thus (X, λ̃sup) is a 1-fuzzy subalgebra of X. Therefore (X, λ̃)

is a (k, 1)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈ {1, 2, 3, 4}. �

Corollary 3.19. If (X, λ̃) is an N2-subalgebra of (X, ∗, 0) in which λ̃inf is
constant on X, then it is a (k, 1)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈
{1, 2, 3, 4}.

Theorem 3.20. Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which (X, λ̃sup)

satisfies the condition (2.5). If (X, λ̃) is a (4, k)-hyperfuzzy subalgebra of
(X, ∗, 0) for k ∈ {1, 2, 3, 4}, then it is an N4-subalgebra of (X, ∗, 0).

Proof. Let (X, λ̃) be a (4, k)-hyperfuzzy subalgebra of (X, ∗, 0) in which (X, λ̃sup)

satisfies the condition (2.5). Then λ̃sup(x ∗ y) ≥ λ̃sup(x) and λ̃sup(x ∗ y) ≥
λ̃sup(y) for all x, y ∈ X. Since (X, λ̃inf) is a 4-fuzzy subalgebra of (X, ∗, 0), we
have

λ̃N (x ∗ y) = λ̃inf(x ∗ y)− λ̃sup(x ∗ y)

≤ max{λ̃inf(x), λ̃inf(y)} − λ̃sup(x ∗ y)

= max{λ̃inf(x)− λ̃sup(x ∗ y), λ̃inf(y)− λ̃sup(x ∗ y)}

≤ max{λ̃inf(x)− λ̃sup(x), λ̃inf(y)− λ̃sup(y)}

= max{λ̃N (x), λ̃N (y)}

for all x, y ∈ X. Therefore (X, λ̃) is an N4-subalgebra of (X, ∗, 0). �

Corollary 3.21. Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which (X, λ̃sup)

satisfies the condition (2.5). If (X, λ̃) is a (2, k)-hyperfuzzy subalgebra of
(X, ∗, 0) for k ∈ {1, 2, 3, 4}, then it is an N4-subalgebra of (X, ∗, 0).

Theorem 3.22. If (X, λ̃) is an N4-subalgebra of (X, ∗, 0) in which λ̃sup is
constant on X, then it is a (4, k)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈
{1, 2, 3, 4}.

Proof. Let (X, λ̃) be an N4-subalgebra of (X, ∗, 0) in which λ̃sup is constant on
X. It is clear that (X, λ̃sup) is a k-fuzzy subalgebra of X for k ∈ {1, 2, 3, 4}.
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Let λ̃sup(x) = t for all x ∈ X. Then

λ̃inf(x ∗ y) = λ̃N (x ∗ y) + λ̃sup(x ∗ y)

≤ max{λ̃N (x), λ̃N (y)}+ t

= max{λ̃N (x) + t, λ̃N (y) + t}

= max{λ̃inf(x), λ̃inf(y)}

for all x, y ∈ X, that is, (X, λ̃inf) is a 4-fuzzy subalgebra of (X, ∗, 0). Hence
(X, λ̃) is a (4, k)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈ {1, 2, 3, 4}. �

Corollary 3.23. If (X, λ̃) is an N2-subalgebra of (X, ∗, 0) in which λ̃sup is
constant on X, then it is a (4, k)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈
{1, 2, 3, 4}.

Theorem 3.24. Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which (X, λ̃inf)

satisfies the condition (2.5). If (X, λ̃) is a (k, 4)-hyperfuzzy subalgebra of
(X, ∗, 0) for k ∈ {1, 2, 3, 4}, then it is an N1-subalgebra of (X, ∗, 0).

Proof. Assume that (X, λ̃) is a (k, 4)-hyperfuzzy subalgebra of (X, ∗, 0) for
k ∈ {1, 2, 3, 4} in which (X, λ̃inf) satisfies the condition (2.5). Then λ̃inf(x∗y) ≥
λ̃inf(x) and λ̃inf(x ∗ y) ≥ λ̃inf(y) for all x, y ∈ X, and (X, λ̃sup) is a 4-fuzzy
subalgebra of X. Hence

λ̃N (x ∗ y) = λ̃inf(x ∗ y)− λ̃sup(x ∗ y)

≥ λ̃inf(x ∗ y)−max{λ̃sup(x), λ̃sup(y)}

= min{λ̃inf(x ∗ y)− λ̃sup(x), λ̃inf(x ∗ y)− λ̃sup(y)}

≥ min{λ̃inf(x)− λ̃sup(x), λ̃inf(x)− λ̃sup(y)}

= min{λ̃N (x), λ̃N (y)}

for all x, y ∈ X, and so (X, λ̃) is an N1-subalgebra of (X, ∗, 0). �

Corollary 3.25. Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which (X, λ̃inf)

satisfies the condition (2.5). If (X, λ̃) is a (k, 2)-hyperfuzzy subalgebra of
(X, ∗, 0) for k ∈ {1, 2, 3, 4}, then it is an N1-subalgebra of (X, ∗, 0).

Theorem 3.26. Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which λ̃inf

is constant. Then every N1-subalgebra is a (k, 4)-hyperfuzzy subalgebra for
k ∈ {1, 2, 3, 4}.

Proof. Let (X, λ̃) be an N1-subalgebra of (X, ∗, 0) in which λ̃inf(x) = t for
all x ∈ X. It is obvious that (X, λ̃inf) is a k-fuzzy subalgebra of (X, ∗, 0) for
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k ∈ {1, 2, 3, 4}. Also we have

λ̃sup(x ∗ y) = λ̃inf(x ∗ y)− λ̃N (x ∗ y) = t− λ̃N (x ∗ y)

≤ t−min{λ̃N (x), λ̃N (y)}

= max{t− λ̃N (x), t− λ̃N (y)}

= max{λ̃sup(x), λ̃sup(y)}

for all x, y ∈ X, and hence (X, λ̃sup) is a 4-fuzzy subalgebra of (X, ∗, 0). There-
fore (X, λ̃) is a (k, 4)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈ {1, 2, 3, 4}. �

Corollary 3.27. Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which λ̃inf

is constant. Then every N3-subalgebra is a (k, 4)-hyperfuzzy subalgebra for
k ∈ {1, 2, 3, 4}.

Theorem 3.28. Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which (X, λ̃sup)

satisfies the condition (2.4). For every k ∈ {1, 2, 3, 4}, every (1, k)-hyperfuzzy
subalgebra is an N1-subalgebra.

Proof. For every k ∈ {1, 2, 3, 4}, let (X, λ̃) be a (1, k)-hyperfuzzy subalgebra
of (X, ∗, 0) in which (X, λ̃sup) satisfies the condition (2.4). Then λ̃sup(x ∗ y) ≤
λ̃sup(x) and λ̃sup(x ∗ y) ≤ λ̃sup(y) for all x, y ∈ X. Since (X, λ̃inf) is a 1-fuzzy
subalgebra of (X, ∗, 0), we have

λ̃N (x ∗ y) = λ̃inf(x ∗ y)− λ̃sup(x ∗ y)

≥ min{λ̃inf(x), λ̃inf(y)} − λ̃sup(x ∗ y)

= min{λ̃inf(x)− λ̃sup(x ∗ y), λ̃inf(y)− λ̃sup(x ∗ y)}

≥ min{λ̃inf(x)− λ̃sup(x), λ̃inf(y)− λ̃sup(y)}

= min{λ̃N (x), λ̃N (y)}

for all x, y ∈ X. Thus (X, λ̃) is an N1-subalgebra of (X, ∗, 0). �

Corollary 3.29. Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which (X, λ̃sup)

satisfies the condition (2.4). For every k ∈ {1, 2, 3, 4}, every (3, k)-hyperfuzzy
subalgebra is an N1-subalgebra.

Theorem 3.30. Let (X, λ̃) be an N1-subalgebra of (X, ∗, 0). If λ̃sup is con-
stant on X, then (X, λ̃) is a (1, k)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈
{1, 2, 3, 4}.

Proof. Let (X, λ̃) be an N1-subalgebra of (X, ∗, 0) such that λ̃sup(x) = t for
all x ∈ X. Obviously, (X, λ̃sup) is a k-fuzzy subalgebra of (X, ∗, 0) for k ∈
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{1, 2, 3, 4}, and

λ̃inf(x ∗ y) = λ̃sup(x ∗ y) + λ̃N (x ∗ y)

≥ t+min{λ̃N (x), λ̃N (y)}

= min{t+ λ̃N (x), t+ λ̃N (y)}

= min{λ̃inf(x), λ̃inf(y)}

for all x, y ∈ X, and so (X, λ̃inf) is a 1-fuzzy subalgebra of (X, ∗, 0). Therefore
(X, λ̃) is a (1, k)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈ {1, 2, 3, 4}. �

Corollary 3.31. Let (X, λ̃) be an N3-subalgebra of (X, ∗, 0) in which λ̃sup is
constant on X. Then (X, λ̃) is a (1, k)-hyperfuzzy subalgebra of (X, ∗, 0) for
k ∈ {1, 2, 3, 4}.

Theorem 3.32. Given a hyper structure (X, λ̃) over (X, ∗, 0) in which λ̃inf

is constant on X, if (X, λ̃) is an N2-subalgebra (resp., N3-subalgebra) of
(X, ∗, 0), then (X, λ̃) is a (k, 3)-hyperfuzzy (resp., (k, 2)-hyperfuzzy ) subalgebra
of (X, ∗, 0) for k ∈ {1, 2, 3, 4}.

Proof. Let (X, λ̃) be an N2-subalgebra of (X, ∗, 0) such that λ̃inf(x) = t for all
x ∈ X. Then (X, λ̃inf) is a k-fuzzy subalgebra of (X, ∗, 0) for k ∈ {1, 2, 3, 4},
and

λ̃sup(x ∗ y) = λ̃inf(x ∗ y)− λ̃N (x ∗ y) = t− λ̃N (x ∗ y)

≥ t−min{λ̃N (x), λ̃N (y)}

= max{t− λ̃N (x), t− λ̃N (y)}

= max{λ̃sup(x), λ̃sup(y)}

for all x, y ∈ X, and so (X, λ̃sup) is a 3-fuzzy subalgebra of (X, ∗, 0). Therefore
(X, λ̃) is a (k, 3)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈ {1, 2, 3, 4}. Similarly,
if (X, λ̃) is an N3-subalgebra of (X, ∗, 0) such that λ̃inf(x) = t for all x ∈ X,
then (X, λ̃) is a (k, 2)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈ {1, 2, 3, 4}. �

Theorem 3.33. Let (X, λ̃) be a (k, 2)-hyperfuzzy (resp., (k, 3)-hyperfuzzy ) sub-
algebra of (X, ∗, 0) in which (X, λ̃inf) satisfies the condition (2.5) (resp., (2.4))
for k ∈ {1, 2, 3, 4}. Then (X, λ̃) is an N3-subalgebra (resp., N2-subalgebra) of
(X, ∗, 0).

Proof. Assume that (X, λ̃) is a (k, 2)-hyperfuzzy subalgebra of (X, ∗, 0) in which
(X, λ̃inf) satisfies the condition (2.5). Then λ̃inf(x∗y) ≥ λ̃inf(x) and λ̃inf(x∗y) ≥
λ̃inf(y) for all x, y ∈ X. Since (X, λ̃sup) is a 2-fuzzy subalgebra of (X, ∗, 0), it
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follows that

λ̃N (x ∗ y) = λ̃inf(x ∗ y)− λ̃sup(x ∗ y)

≥ λ̃inf(x ∗ y)−min{λ̃sup(x), λ̃sup(y)}

= max{λ̃inf(x ∗ y)− λ̃sup(x), λ̃inf(x ∗ y)− λ̃sup(y)}

≥ max{λ̃inf(x)− λ̃sup(x), λ̃inf(y)− λ̃sup(y)}

= max{λ̃N (x), λ̃N (y)}

for all x, y ∈ X. Hence (X, λ̃) is an N3-subalgebra of (X, ∗, 0). Similarly,
if (X, λ̃) is a (k, 3)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈ {1, 2, 3, 4} in
which (X, λ̃inf) satisfies the condition (2.4), then it is an N2-subalgebra of
(X, ∗, 0). �

Theorem 3.34. Let (X, λ̃) be a hyper structure over (X, ∗, 0) in which (X, λ̃sup)

satisfies the condition (2.5) (resp., (2.4)). If (X, λ̃) is a (2, k)-hyperfuzzy (resp.,
(3, k)-hyperfuzzy ) subalgebra of (X, ∗, 0) for k ∈ {1, 2, 3, 4}, then (X, λ̃) is an
N2-subalgebra (resp., N3-subalgebra) of (X, ∗, 0).

Proof. Let (X, λ̃) be a (2, k)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈ {1, 2, 3, 4}
in which (X, λ̃sup) satisfies the condition (2.5). Then λ̃sup(x ∗ y) ≥ λ̃sup(x) and
λ̃sup(x ∗ y) ≥ λ̃sup(y) for all x, y ∈ X. Since (X, λ̃inf) is a 2-fuzzy subalgebra of
(X, ∗, 0), we have

λ̃N (x ∗ y) = λ̃inf(x ∗ y)− λ̃sup(x ∗ y)

≤ min{λ̃inf(x), λ̃inf(y)} − λ̃sup(x ∗ y)

= min{λ̃inf(x)− λ̃sup(x ∗ y), λ̃inf(y)− λ̃sup(x ∗ y)}

≤ min{λ̃inf(x)− λ̃sup(x), λ̃inf(y)− λ̃sup(y)}

= min{λ̃N (x), λ̃N (y)}

for all x, y ∈ X. Thus (X, λ̃) is an N2-subalgebra of (X, ∗, 0). Similarly,
we can verify that if (X, λ̃) is a (3, k)-hyperfuzzy subalgebra of (X, ∗, 0) for
k ∈ {1, 2, 3, 4} in which (X, λ̃sup) satisfies the condition (2.4), then (X, λ̃) is an
N3-subalgebra of (X, ∗, 0). �

Theorem 3.35. Given a hyper structure (X, λ̃) over (X, ∗, 0) in which λ̃sup

is constant on X, if (X, λ̃) is an N2-subalgebra (resp., N3-subalgebra) of
(X, ∗, 0), then (X, λ̃) is a (2, k)-hyperfuzzy (resp., (3, k)-hyperfuzzy ) subalgebra
of (X, ∗, 0) for k ∈ {1, 2, 3, 4}.

Proof. Assume that (X, λ̃) is an N2-subalgebra of (X, ∗, 0) such that λ̃sup(x) =

t for all x ∈ X. Obviously, (X, λ̃sup) is a k-fuzzy subalgebra of (X, ∗, 0) for
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k ∈ {1, 2, 3, 4}, and

λ̃inf(x ∗ y) = λ̃N (x ∗ y) + λ̃sup(x ∗ y) = λ̃N (x ∗ y) + t

≤ min{λ̃N (x), λ̃N (y)}+ t

= min{λ̃N (x) + t, λ̃N (y) + t}

= min{λ̃inf(x), λ̃inf(y)}

for all x, y ∈ X. Hence (X, λ̃inf) is a 2-fuzzy subalgebra of (X, ∗, 0), and
therefore (X, λ̃) is a (2, k)-hyperfuzzy subalgebra of (X, ∗, 0) for k ∈ {1, 2, 3, 4}.
Similarly, we can prove that if (X, λ̃) is an N3-subalgebra of (X, ∗, 0) such that
λ̃sup(x) = t for all x ∈ X, then (X, λ̃) is a (3, k)-hyperfuzzy subalgebra of
(X, ∗, 0) for k ∈ {1, 2, 3, 4}. �
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